
tandem

Carsten Uphoff

Sep 15, 2023

CONTENTS

1 License 3

2 Table of contents 5

i

ii

tandem

Tandem is a scientific software for SEAS (Sequences of Earthquakes and Aseismic Slip) modelling and for solving
Poisson and linear elasticity problems. It implements the Symmetric Interior Penalty Galerkin (SIPG) method using
unstructured simplicial meshes (triangle meshes in 2D, tetrahedral meshes in 3D).

For a recent overview see our vEGU21 display.

CONTENTS 1

https://tear-erc.github.io/tandem-egu21/

tandem

2 CONTENTS

CHAPTER

ONE

LICENSE

tandem is made available under the BSD 3-Clause License.

3

https://github.com/TEAR-ERC/tandem/blob/master/LICENSE.md

tandem

4 Chapter 1. License

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Getting started

2.1.1 Quick start with Docker

Attention: Please install Docker to follow the quick start procedure. You may use a drop-in replacement such as
podman, too.

Step 1: Enter the Docker container

Open a terminal and pull the tandem-env image:

$ docker pull uphoffc/tandem-env

Activate the Docker container with

$ docker run -it -v $(pwd):/home -u $(id -u):$(id -g) uphoffc/tandem-env

You should now see something like

I have no name!@<random string>:/home$

Note: In the docker run command, the option -it opens an interactive terminal, -v $(pwd):/homemaps your current
working directory to the home folder inside the container, and -u $(id -u):$(id -g) fixes the file permissions for
files you create inside the container.

Step 2: Compile tandem

Inside the Docker container, clone the tandem repository and load submodules:

$ git clone https://github.com/TEAR-ERC/tandem.git
$ cd tandem/
$ git submodule update --init

Tandem uses CMake, which is contained in the Docker image. We do not run CMake from the tandem directory but
create a build directory to not pollute our workspace. From the build directory we run CMake followed by make:

5

https://www.docker.com/
https://podman.io/

tandem

$ mkdir build
$ cd build
$ cmake .. -DPOLYNOMIAL_DEGREE=6
$ make -j

Note that we specified the polynomial degree of the finite element spaces with the POLYNOMIAL_DEGREE variable.
Another important variable is DOMAIN_DIMENSION, which should be set to 2 or 3, depending on whether you want to
run 2D or 3D models. You can also use ccmake .. to enter a GUI which shows all available compilation variables.

Step 3: Run tests

To check that everything works, run

$ make test

from the build folder. At the end of the tests, you should see

100% tests passed, 0 tests failed out of 21

You are now set to run the examples.

2.1.2 Installation

Tandem and its dependencies can be installed automatically with Spack, or manually.

Spack installation

Spack is an HPC software package manager. It automates the process of installing, upgrading, configuring, and re-
moving computer programs. In particular, the spack package tandem allows automatically installing tandem and all
its dependencies, and creating environment modules. First, install spack with, e.g.

cd $HOME
git clone --depth 1 https://github.com/spack/spack.git
cd spack
echo "export SPACK_ROOT=$PWD" >> $HOME/.bashrc
echo "export PATH=\$SPACK_ROOT/bin:\$PATH" >> $HOME/.bashrc

Then install tandem with:

spack install tandem@main polynomial_degree=3 domain_dimension=2

tandem can then be loaded with spack load tandem. Alternatively, we might prefer loading tandem from environ-
ment modules. We therefore now detail the procedure to generate such module(s). You may want to update ~/.spack/
modules.yaml, to specify the path where the module file(s) should be installed (if e.g. if want to share your installation
with other users and they cannot access your $HOME), and to generate module files with more readable names:

modules:
default:
roots:
tcl: your_custom_path_2_modules

default:
(continues on next page)

6 Chapter 2. Table of contents

https://github.com/spack/spack/wiki
https://github.com/spack/spack/wiki

tandem

(continued from previous page)

tcl:
all:
suffixes:
domain_dimension=2: 'd2'
domain_dimension=3: 'd3'
polynomial_degree=1: 'p1'
polynomial_degree=2: 'p2'
polynomial_degree=3: 'p3'
polynomial_degree=4: 'p4'
polynomial_degree=5: 'p5'
polynomial_degree=6: 'p6'

Note that a custom install directory for spack packages can also be set, by changing ~/.spack/config.yaml:

config:
install_tree: path_2_packages

We can then generate a tandem module file with:

spack module tcl refresh tandem

to access the module at start up, add to your ~/.bashrc:

module use your_custom_path_2_modules/your_spack_arch_string

e.g.:

module use $HOME/spack/modules/x86_avx512/linux-sles15-skylake_avx512/

SuperMUC-NG installation

First, have a look at this page to best configure git on SuperMUC-NG.

The software stack on SuperMUC-NG has been installed with spack. Yet, spack on SuperMUC-NG is not recent enough
to natively know how to compile tandem. The recipe for compiling spack should then be added from a repository:

load spack
module load user_spack
clone seissol-spack-aid and add the repository
git clone --branch supermuc_NG https://github.com/SeisSol/seissol-spack-aid.git
cd seissol-spack-aid
spack repo add ./spack

tandem can be then installed, e.g. with:

spack install tandem@main polynomial_degree=3 domain_dimension=2 target=skylake_avx512

The procedure to create an environment module is the same as detailed above.

2.1. Getting started 7

https://seissol.readthedocs.io/en/latest/behind_firewall.html

tandem

Manual installation

The following dependencies are likely available via your package manager:

• A recent C++-17 capable compiler (we recommend GCC 8.0 or clang 8)

• MPI (e.g. OpenMPI)

• zlib (1.2)

• Eigen (3.3)

• Python (3.5) with NumPy (1.12.0)

• Lua (5.3)

• CMake (3.18)

The following dependencies likely need to be installed manually:

• METIS (5.1) and ParMETIS (4.0)

• PETSc (3.13)

• (Optional) libxsmm (= 1.16.1)

Dependencies via package manager

The following instructions are valid for Debian buster and might also work for Ubuntu. Consult your package manager’s
documentation for other operating systems.

apt-get install -y gcc g++ gfortran libgomp1 \
make cmake libopenblas-dev libopenblas-base \
libopenmpi-dev libopenmpi3 git libeigen3-dev \
python3 python3-distutils python3-numpy \
liblua5.3-0 liblua5.3-dev zlib1g zlib1g-dev

Install METIS and ParMETIS

wget http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz
wget http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
tar -xvf metis-5.1.0.tar.gz
tar -xvf parmetis-4.0.3.tar.gz
cd metis-5.1.0
make config && make && make install
cd ../parmetis-4.0.3
make config && make && make install
cd ..

8 Chapter 2. Table of contents

https://eigen.tuxfamily.org/
https://www.lua.org/
https://cmake.org/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.mcs.anl.gov/petsc/
https://github.com/hfp/libxsmm

tandem

Install PETSc

wget http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-lite-3.14.6.tar.gz
tar -xvf petsc-lite-3.14.6.tar.gz
cd petsc-3.14.6
./configure --with-fortran-bindings=0 --with-debugging=0 \

--with-memalign=32 --with-64-bit-indices \
CC=mpicc CXX=mpicxx FC=mpif90 --prefix=/usr/local/ \
--download-mumps --download-scalapack \
COPTFLAGS="-g -O3" CXXOPTFLAGS="-g -O3"

make PETSC_DIR=`pwd` PETSC_ARCH=arch-linux-c-opt -j
make PETSC_DIR=`pwd` PETSC_ARCH=arch-linux-c-opt install
cd ..

(Optional) Install libxsmm

wget https://github.com/hfp/libxsmm/archive/refs/tags/1.16.1.tar.gz
tar -xvf 1.16.1.tar.gz
cd libxsmm-1.16.1
make -j generator
cp bin/libxsmm_gemm_generator /usr/local/bin/
cd ..

Compile tandem

$ git clone https://github.com/TEAR-ERC/tandem.git
$ cd tandem/
$ git submodule update --init
$ mkdir build
$ cd build
$ cmake .. -DPOLYNOMIAL_DEGREE=6
$ make -j

If you installed libraries to a folder different from /usr or /usr/local and CMake cannot find your libraries, try to
set the CMAKE_PREFIX_PATH, e.g.

$ cmake .. -DPOLYNOMIAL_DEGREE=6 -DCMAKE_PREFIX_PATH=/path/to/your/libs

If you require multiple paths to CMake, the syntax is as follows -DCMAKE_PREFIX_PATH="/usr/local/path_1;/
usr/local/path_2"

2.1. Getting started 9

https://cmake.org/cmake/help/latest/variable/CMAKE_PREFIX_PATH.html

tandem

2.1.3 Examples

In the tandem repository you find many examples. The folders poisson and elasticity contain test problems for
the Poisson and Elasticity solvers. In the folder tandem you find SEAS models. The folder options contains PETSc
solver configurations.

Elasticity problem

From the build directory, run

$./app/static ../examples/elasticity/2d/cosine.toml --output cosine

After a successful run, there should be the file cosine.pvtu in your build directory. The pvtu-file can be visualized
with ParaView. Cf. the following visualization of the cosine example:

Along with the pvtu-file, you also get console output, e.g.

Solver warmup: 0.120276 s
Solve: 0.310153 s
Residual norm: 1.20671e-11
Iterations: 127
L2 error: 2.88579e-09

We see that we need quite a number of iterations to solve this problem. Let’s use a LU-decomposition instead of an
iterative solver:

$./app/static ../examples/elasticity/2d/cosine.toml --output cosine \
--petsc -options_file ../examples/options/lu_mumps.cfg

The console output should be similar to the following:

Solver warmup: 0.194319 s
Solve: 0.00834613 s
Residual norm: 0
Iterations: 1
L2 error: 2.88579e-09

We see that the warm-up time increased but the solve time decreased a lot. Moreover, we only need 1 “iteration” as we
used a direct solver.

Now open up the parameter file, cosine.toml:

10 Chapter 2. Table of contents

https://github.com/TEAR-ERC/tandem/tree/master/examples
https://www.paraview.org/

tandem

resolution = 0.125

[elasticity]
lib = "cosine.lua"
...

The cosine example uses a generated mesh, therefore we can adjust the mesh resolution in the parameter with the
resolution parameter. You could now edit the parameter file to adjust the resolution. Alternatively, you can override
top-level parameters from the command line:

$./app/static ../examples/elasticity/2d/cosine.toml --output cosine \
--resolution 0.0625 --petsc -options_file ../examples/options/lu_mumps.cfg

You should now see

Solver warmup: 0.760638 s
Solve: 0.0306711 s
Residual norm: 0
Iterations: 1
L2 error: 2.42624e-11

The solve and warm-up time increased considerably, but also the error is lower. Indeed, comparing the errors with

log2

(︂
2.88579 · 10−9

2.42624 · 10−11

)︂
≈ 6.9

shows that the empirical convergence order is close to the theoretical convergence order 7. (Assuming that you compiled
tandem with POLYNOMIAL_DEGREE=6.)

SEAS problem

Attention: Please install Gmsh for this section.

On your local machine, go to the folder examples/tandem/2d and run

$ gmsh -2 bp1_sym.geo -setnumber Lf 0.5

You have now created a mesh with an on-fault resolution of 0.5 km. Now go to your build folder (inside the Docker
container, if you used Docker) and run:

$./app/tandem ../examples/tandem/2d/bp1_sym.toml \
--petsc -options_file ../examples/options/lu_mumps.cfg \
-options_file ../examples/options/rk45.cfg -ts_monitor

In comparison to the Elasticity example, we added the rk45.cfg options file which selects an adaptive Runge-Kutta
time-stepping scheme. The option -ts_monitor enables monitoring of time and time-step size.

Time to fetch a coffee, as this is going to take a while. In order to speed things up, add --mode QDGreen:

$./app/tandem ../examples/tandem/2d/bp1_sym.toml --mode QDGreen \
--petsc -options_file ../examples/options/lu_mumps.cfg \
-options_file ../examples/options/rk45.cfg -ts_monitor

2.1. Getting started 11

https://gmsh.info/

tandem

Tandem now spends some time in a pre-computation step, but the time-stepping itself will be much faster.

The code logs the slip rate and other quantities at certain points and saves those in the fltst_* files. You can view
these files using the viewrec tool from the SeisSol project – even when tandem is still running.

Welcome to tandem!

Tandem may be used in 2D and 3D and supports low-order as well as high-order spaces. The specific configuration
is selected at compile time, which is why tandem needs to compiled from source. If you have Docker installed, you
might want to try the quick start procedure. Here, all required dependencies are already contained in a Docker image.
Otherwise, follow the regular installation procedure.

Once tandem is installed, try to run the example problems.

2.2 My first model

In this first tutorial, we are going to build SEAS model for normal and reverse faulting on a planar fault.

We create the CAD model of the fault and generate the mesh in the first step. The material and friction parameters are
set in a Lua-script. Simulation parameters are set in the parameter file.

Tip: If you dislike copying text snippets, you can copy the complete tutorial files from the example folder.

2.2.1 Mesh creation with Gmsh

Gmsh allows CAD modelling as well as mesh generation. It comes with its own scripting language that we use to build
the geometry.

Create a file called tutorial.geo and open it with your favourite text editor.

We first define a few parameters. These parameters can be either set from the Gmsh GUI or from the command line
using -setnumber.

DefineConstant[res = {20.0, Min 0, Max 10, Name "Domain resolution" }];
DefineConstant[res_f = {0.25, Min 0, Max 10, Name "Fault resolution" }];
DefineConstant[dip = {60, Min 0, Max 90, Name "Dipping angle" }];

SetFactory("OpenCASCADE");

The last line enables the OpenCASCADE CAD kernel that we use to create our geometry. The dip angle is converted
from degrees to radians and a few constants to define the bounding box are set:

dip_rad = dip * Pi / 180.0;
W = 40.0;
H = 100.0;
dX = 100.0;
X0 = -dX;
X1 = H * Cos(dip_rad) / Sin(dip_rad) + dX;
Y0 = -H;

We create our domain [𝑋0, 𝑋1] × [𝑌0, 0]:

box = news; Rectangle(box) = {X0, Y0, 0.0, X1-X0, -Y0};

12 Chapter 2. Table of contents

https://github.com/SeisSol/SeisSol/tree/master/postprocessing/visualization/receiver
https://xkcd.com/1874/
https://github.com/TEAR-ERC/tandem/tree/master/examples/tandem/2d
https://gmsh.info/

tandem

See also:

The domain dimensions are given in kilometres. Thus, we are going to scale the Lamé parameters accordingly.

We then insert a fault. As we are going to vary the a-parameter from 0 km to 40 km depth, we split the fault to later
set a higher resolution in the upper part of the fault.

p1 = newp; Point(p1) = {0.0, 0.0, 0.0, res_f};
p2 = newp; Point(p2) = {W * Cos(dip_rad) / Sin(dip_rad), -W, 0.0, res_f};
p3 = newp; Point(p3) = {H * Cos(dip_rad) / Sin(dip_rad), -H, 0.0, res_f};

fault1 = newl; Line(fault1) = {p1,p2};
fault2 = newl; Line(fault2) = {p2,p3};

The mesh generator is currently unaware of the fault. Hence, we intersect the fault with the domain:

v[] = BooleanFragments{ Surface{box}; Delete; }{ Line{fault1, fault2}; Delete; };

The Line-IDs have changed in the above boolean operation. We recover the individual lines by searching them inside
bounding boxes:

eps = 1e-3;
top[] = Curve In BoundingBox{X0-eps, -eps, -eps, X1+eps, eps, eps};
bottom[] = Curve In BoundingBox{X0-eps, Y0-eps, -eps, X1+eps, Y0+eps, eps};
left[] = Curve In BoundingBox{X0-eps, Y0-eps, -eps, X0+eps, eps, eps};
right[] = Curve In BoundingBox{X1-eps, Y0-eps, -eps, X1+eps, eps, eps};

Finally, we set resolution parameters, assign boundary conditions, and set the mesh format to version 2.2.

MeshSize{ PointsOf{Surface{:};} } = res;
MeshSize{ PointsOf{Line{fault1};} } = res_f;

Physical Curve(1) = {bottom(),top()};
Physical Curve(3) = {fault1,fault2};
Physical Curve(5) = {left[],right[]};
Physical Surface(1) = {v[]};

Mesh.MshFileVersion = 2.2;

The argument of Physical Curve must be set to 1, 3, or 5. A 1 stands for free surface, 3 for fault, and 5 for Dirichlet
boundary condition.

We can now generate the mesh and adjust the resolution and dip angle from the command line. E.g.

$ gmsh -2 tutorial.geo -setnumber res_f 0.5

2.2. My first model 13

tandem

2.2.2 Lua scripting

Warning: This page is under construction.

local Tutorial = {}
Tutorial.__index = Tutorial

-- constant parameters
Tutorial.b = 0.010
Tutorial.V0 = 1.0e-6
Tutorial.f0 = 0.6

-- internal parameters
Tutorial.rho = 2.670
Tutorial.cs = 3.464
Tutorial.nu = 0.25

function Tutorial.new(params)
local self = setmetatable({}, Tutorial)
self.dip = params.dip
self.Vp = params.Vp
return self

end

function Tutorial:boundary(x, y, t)
local Vh = self.Vp * t / 2.0
if x < 0 then

Vh = -Vh
end
return Vh, 0.0

end

function Tutorial:mu(x, y)
return self.cs^2 * self.rho

end

function Tutorial:lam(x, y)
return 2 * self.nu * self:mu(x,y) / (1 - 2 * self.nu)

end

function Tutorial:eta(x, y)
return self.cs * self.rho / 2.0

end

function Tutorial:L(x, y)
return 0.008

end

function Tutorial:Sinit(x, y)
return 0.0

end
(continues on next page)

14 Chapter 2. Table of contents

tandem

(continued from previous page)

function Tutorial:Vinit(x, y)
return self.Vp * math.cos(self.dip * math.pi / 180.0)

end

function Tutorial:a(x, y)
local d = math.min(math.abs(y), 32.2)
return self.b + -5.1115922342571294e-6*d^3 + 0.00029499040079464792*d^2 - 0.

→˓003330761720380433*d + 0.0066855943526305008
end

function Tutorial:sn_pre(x, y)
return 50.0

end

function Tutorial:tau_pre(x, y)
local Vi = self:Vinit(x, y)
local sn = self:sn_pre(x, y)
local amax = self:a(0, -40)
local e = math.exp((self.f0 + self.b * math.log(self.V0 / math.abs(Vi))) / amax)
return -(sn * amax * math.asinh((Vi / (2.0 * self.V0)) * e) + self:eta(x, y) * Vi)

end

normal = Tutorial.new{dip=60, Vp=1e-9}
reverse = Tutorial.new{dip=60, Vp=-1e-9}

0 5 10 15 20 25 30 35 40
depth [km]

0.00

0.01

0.02

0.03

a
- b

2.2.3 Parameter file

Warning: This page is under construction.

final_time = 47304000000
mesh_file = "tutorial.msh"
lib = "tutorial.lua"

(continues on next page)

2.2. My first model 15

tandem

(continued from previous page)

scenario = "normal"
type = "elasticity"
ref_normal = [1, 0]
boundary_linear = true

[fault_probe_output]
prefix = "fltst_"
probes = [

{ name = "dp000", x = [0.0, -0.0] },
{ name = "dp025", x = [1.2500000000000002, -2.1650635094610964] },
{ name = "dp050", x = [2.5000000000000004, -4.330127018922193] },
{ name = "dp075", x = [3.750000000000001, -6.495190528383289] },
{ name = "dp100", x = [5.000000000000001, -8.660254037844386] },
{ name = "dp125", x = [6.250000000000002, -10.825317547305483] },
{ name = "dp150", x = [7.500000000000002, -12.990381056766578] },
{ name = "dp175", x = [8.750000000000002, -15.155444566227676] },
{ name = "dp200", x = [10.000000000000002, -17.32050807568877] },
{ name = "dp250", x = [12.500000000000004, -21.650635094610966] },
{ name = "dp300", x = [15.000000000000004, -25.980762113533157] },
{ name = "dp350", x = [17.500000000000004, -30.31088913245535] },

]

[fault_output]
prefix = "output/fault"
rtol = 0.1

[domain_output]
prefix = "output/domain"
rtol = 0.1

2.2.4 Run model

Warning: This page is under construction.

Petsc options

-ksp_type preonly
-pc_type lu
-pc_factor_mat_solver_type mumps

-ts_type rk
-ts_rk_type 5dp
-ts_rtol 1e-8
-ts_atol 1e-50
-ts_adapt_wnormtype infinity

-ts_dt 0.0001
-ts_monitor

16 Chapter 2. Table of contents

tandem

$./tandem tutorial.toml --discrete_green yes --petsc -options_file solver.cfg

2.2.5 Post processing

Warning: This page is under construction.

2.3 Reference

2.3.1 Equation scaling

When working with SI units in SEAS models numbers might get very large. Rescaling the equations might be advan-
tageous to avoid large round-off errors in finite precision. In this section, we show how to properly scale the elasticity
equations.

The linear elasticity equations in first order form are given by

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗
𝜕𝑢𝑘
𝜕𝑥𝑘

+ 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
−𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

= 𝑓𝑖

We define scaled quantities

𝑥̄𝑖 =
𝑥𝑖
𝐿
, 𝑢̄𝑖 =

𝑢𝑖
𝑢𝑐
, 𝜎̄𝑖𝑗 =

𝜎𝑖𝑗
𝜎𝑐
,

where 𝐿, 𝑢𝑐, 𝜎𝑐 are scaling constants. Inserting these into the linear elasticity equations gives

𝜎𝑐𝜎̄𝑖𝑗 = 𝐿−1𝑢𝑐𝜆𝛿𝑖𝑗
𝜕𝑢̄𝑘
𝜕𝑥̄𝑘

+ 𝐿−1𝑢𝑐𝜇

(︂
𝜕𝑢̄𝑖
𝜕𝑥̄𝑗

+
𝜕𝑢̄𝑗
𝜕𝑥̄𝑖

)︂
−𝐿−1𝜎𝑐

𝜕𝜎̄𝑖𝑗
𝜕𝑥̄𝑗

= 𝑓𝑖

Multiplying the first equation with 𝜎−1
𝑐 , multiplying the second equation with 𝐿𝜎−1

𝑐 , and defining

𝜆̄ = 𝜎−1
𝑐 𝑢𝑐𝐿

−1𝜆, 𝜇̄ = 𝜎−1
𝑐 𝑢𝑐𝐿

−1𝜇, 𝑓𝑖 = 𝐿𝜎−1
𝑐 𝑓𝑖

leads to

𝜎̄𝑖𝑗 = 𝜆̄𝛿𝑖𝑗
𝜕𝑢̄𝑘
𝜕𝑥̄𝑘

+ 𝜇̄

(︂
𝜕𝑢̄𝑖
𝜕𝑥̄𝑗

+
𝜕𝑢̄𝑗
𝜕𝑥̄𝑖

)︂
−𝜕𝜎̄𝑖𝑗
𝜕𝑥̄𝑗

= 𝑓𝑖

That is, we recovered the original equations and we only need to scale the mesh and the parameters.

2.3. Reference 17

tandem

Example

We change units with the scaling constants

𝐿 = 103, 𝑢𝑐 = 1, 𝜎𝑐 = 106

In the rescaled equations, the spatial dimension of the mesh is [km], velocities are in [m/s], and stresses are in [MPa].
Parameters and source terms are scaled with

𝜆̄ = 10−9𝜆, 𝜇̄ = 10−9𝜇, 𝑓𝑖 = 10−3𝑓𝑖

i.e. the Lamé parameters are given in [GPa] and force in [10-3 N/m-3].

2.3.2 Sign conventions

Slip is defined as

𝑆 = 𝑢− − 𝑢+

Let the orthogonal basis𝑛,𝑑, 𝑠 be given, where normal𝑛 points from the “-“-side to the “+”-side, 𝑑 is the dip direction,
and 𝑠 is the strike direction. The slip-rate vector is defined as

𝑉 = [𝑆̇ · 𝑑, 𝑆̇ · 𝑠],

the shear traction vector is

𝜏 = [𝑑 · 𝜎𝑛, 𝑠 · 𝜎𝑛],

and the normal stress is given by

𝜎𝑛 = 𝑛 · 𝜎𝑛.

Note that in 2D we drop the second component of the slip-rate and shear traction vector.

The friction law is given by

−(𝜏 0 + 𝜏) = (𝜎0
𝑛 − 𝜎𝑛)𝑓(|𝑉 |, 𝜓)

𝑉

|𝑉 |
+ 𝜂𝑉 ,

where 𝜏 0 and 𝜎0
𝑛 are pre-stresses. We take 𝜎0

𝑛 to be positive in compression, thus the sign is different to 𝜎𝑛.

2.3.3 Fault basis

Slip and slip-rate are defined with respect to a local fault basis. In this document the conventions for the fault basis are
introduced. The direction of movement is defined in terms of the hanging wall and the foot wall:

“The foot wall (hanging wall) is defined as the block below (above) the fault plane. (. . .) the hanging wall moves up
with respect to the foot wall and the fault is known as reverse. (. . .) the opposite happens and the fault is said to be
normal.” [J. Pujol, Elastic Wave Propagation and Generation in Seismology]

The sign of the fault normal is chosen such that

𝑛 · 𝑛ref > 0.

We define that the fault normal points from the foot wall to the hanging wall. In this way the reference normal 𝑛ref
selects the foot and the hanging wall.

18 Chapter 2. Table of contents

tandem

The first component of the slip or slip-rate vector is defined w.r.t. to the normal direction of the fault. Due to the
no-opening condition the first component is zero.

The third component of the slip or slip-rate vector is defined w.r.t. to the strike direction. The latter is defined such that
a hypothetical observer standing on the fault looking in strike direction sees the hanging wall on his right. Thus, the
strike direction is

𝑠 := 𝑢× 𝑛,

where 𝑢 is the direction of “up”, given in the configuration file. E.g. using the enu convention, up would be the vector
𝑢 = (0, 0, 1).

The second component of the slip or slip-rate vector is defined w.r.t. to the dip direction, which we define to point
“down”. That is, the dip direction is

𝑑 := 𝑠× 𝑛

Left-lateral, right-lateral, normal, reverse

The slip vector is given by 𝑢 = [𝑢𝑛]𝑛+ [𝑢𝑑]𝑑+ [𝑢𝑠]𝑠, where the square bracket operator for a scalar field 𝑞 is defined
as

[𝑞] := 𝑞− − 𝑞+ = lim
𝜖→0

𝑞(𝑥− 𝜖𝑛) − 𝑞(𝑥+ 𝜖𝑛)

Recall that the normal points from the foot wall to the hanging wall. Thus, if [𝑢𝑑] > 0 we have a reverse fault.
Conversely, if [𝑢𝑑] < 0 we have a normal fault.

For strike slip fault, i.e. [𝑢𝑠] ̸= 0, we have to distinguish two cases:

“In a left-lateral (right-lateral) fault, an observer on one of the walls will see the other wall moving to the left (right).”
[J. Pujol, Elastic Wave Propagation and Generation in Seismology]

If [𝑢𝑠] > 0 then we have a right-lateral fault and if [𝑢𝑠] < 0 then we have a left-lateral fault.

Special-case: Flat fault

Don’t do that.

2.3. Reference 19

	License
	Table of contents
	Getting started
	Quick start with Docker
	Step 1: Enter the Docker container
	Step 2: Compile tandem
	Step 3: Run tests

	Installation
	Spack installation
	SuperMUC-NG installation
	Manual installation
	Dependencies via package manager
	Install METIS and ParMETIS
	Install PETSc
	(Optional) Install libxsmm
	Compile tandem

	Examples
	Elasticity problem
	SEAS problem

	My first model
	Mesh creation with Gmsh
	Lua scripting
	Parameter file
	Run model
	Post processing

	Reference
	Equation scaling
	Example

	Sign conventions
	Fault basis
	Left-lateral, right-lateral, normal, reverse
	Special-case: Flat fault

