Equation scaling#

When working with SI units in SEAS models numbers might get very large. Rescaling the equations might be advantageous to avoid large round-off errors in finite precision. In this section, we show how to properly scale the elasticity equations.

The linear elasticity equations in first order form are given by

\[\begin{aligned} \sigma_{ij} &= \lambda \delta_{ij}\frac{\partial u_k}{\partial x_k} + \mu\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) \\ - \frac{\partial \sigma_{ij}}{\partial x_j} &= f_i \end{aligned}\]

We define scaled quantities

\[\bar{x}_i = \frac{x_i}{L}, \quad \bar{u}_i = \frac{u_i}{u_c}, \quad \bar{\sigma}_{ij} = \frac{\sigma_{ij}}{\sigma_c},\]

where \(L, u_c, \sigma_c\) are scaling constants. Inserting these into the linear elasticity equations gives

\[\begin{aligned} \sigma_c\bar{\sigma}_{ij} &= L^{-1}u_c\lambda \delta_{ij}\frac{\partial \bar{u}_k}{\partial \bar{x}_k} + L^{-1}u_c\mu\left(\frac{\partial \bar{u}_i}{\partial \bar{x}_j} + \frac{\partial \bar{u}_j}{\partial \bar{x}_i}\right) \\ - L^{-1}\sigma_c\frac{\partial \bar{\sigma}_{ij}}{\partial \bar{x}_j} &= f_i \end{aligned}\]

Multiplying the first equation with \(\sigma_c^{-1}\), multiplying the second equation with \(L\sigma_c^{-1}\), and defining

\[\bar{\lambda} = \sigma_c^{-1}u_cL^{-1}\lambda, \quad \bar{\mu} = \sigma_c^{-1}u_cL^{-1}\mu, \quad \bar{f}_i = L\sigma_c^{-1} f_i\]

leads to

\[\begin{aligned} \bar{\sigma}_{ij} &= \bar{\lambda} \delta_{ij}\frac{\partial \bar{u}_k}{\partial \bar{x}_k} + \bar{\mu}\left(\frac{\partial \bar{u}_i}{\partial \bar{x}_j} + \frac{\partial \bar{u}_j}{\partial \bar{x}_i}\right) \\ - \frac{\partial \bar{\sigma}_{ij}}{\partial \bar{x}_j} &= \bar{f}_i \end{aligned}\]

That is, we recovered the original equations and we only need to scale the mesh and the parameters.

Example#

We change units with the scaling constants

\[L = 10^3, \quad u_c = 1, \quad \sigma_c = 10^6 \]

In the rescaled equations, the spatial dimension of the mesh is [km], velocities are in [m/s], and stresses are in [MPa]. Parameters and source terms are scaled with

\[\bar{\lambda} = 10^{-9}\lambda, \quad \bar{\mu} = 10^{-9}\mu, \quad \bar{f}_i = 10^{-3} f_i\]

i.e. the Lamé parameters are given in [GPa] and force in [10-3 N/m-3].